In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery
نویسندگان
چکیده
A one-pot synthetic methodology for fabricating stimuli-responsive hemicellulose-based hydrogels was developed that consists of the in situ formation of magnetic iron oxide (Fe3O4) nanoparticles during the covalent cross-linking of O-acetyl-galactoglucomannan (AcGGM). The Fe3O4 nanoparticle content controlled the thermal stability, macrostructure, swelling behavior, and magnetization of the hybrid hydrogels. In addition, the magnetic field-responsive hemicellulose hydrogels (MFRHHs) exhibited excellent adsorption and controlled release profiles with bovine serum albumin (BSA) as the model drug. Therefore, the MFRHHs have great potential to be utilized in the biomedical field for tissue engineering applications, controlled drug delivery, and magnetically assisted bioseparation. Magnetic field-responsive hemicellulose hydrogels, prepared using a straightforward one-step process, expand the applications of biomass-derived polysaccharides by combining the renewability of hemicellulose and the magnetism of Fe3O4 nanoparticles.
منابع مشابه
Physicochemical Characteristics and Biomedical Applications of Hydrogels: A Review
Hydrogels are introduced to modem medicine as novel materials suitable for a variety ofbiomedical applications. Studying hydrogels as novel biomaterials has become a fast-developingand exciting research field during the last two decades. These interesting biomaterials have found awide range of application including contact lenses, vehicles for drug delivery and scaffold in tissueengineering and...
متن کاملPoly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone coated Magnetic nanoparticles as a pH-responsive magnetic Nano-carrier for controlled delivery of antibiotics
Objective(s): Pharmaceutical industries are leading to improved medications that can target diseases more effectively and precisely. Researchers have intended to reformulate drugs so that they may be more safely used in human body. The more targeted a drug is, the lower its chance of triggering drug resistance, a cautionary concern surrounding the use of broad-spectrum antibiotics. The aim of t...
متن کاملFeMn2O4 nanoparticles coated dual responsive temperature and pH-responsive polymer as a magnetic nano-carrier for controlled delivery of letrozole anti-cancer
Objective(s): For cancer cells, an efficient and selective drug delivery vehicle can remarkably improve therapeutic approaches. This paper focuses on the synthesis and characterization of magnetic MnFe2O4 NPs and their incorporation in a dual temperature and pH-responsive polymer, which can serve as an efficient drug carrier. Materials and Methods: MnFe2O4 NPs were synthesized by chemical co-pr...
متن کاملMagnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin
Objective(s): Researchers have intended to reformulate drugs so that they may be more safely used in human body. Polymer science and nanotechnology have great roles in this field. The aim of this paper is to introduce an efficient drug delivery vehicle which can perform both targeted and controlled antibiotic release using magnetic nanoparticles grafted pH-responsive polymer.<s...
متن کاملSynthesis and structural properties of Polyvinylpyrrolidone based nanocomposite hydrogels for isoniazid drug delivery
In this study, several examples of hydrogels and nanocomposite hydrogels based on PVP with different content of montmorillonite nanoclay were prepared. Then, the swelling of hydrogels and kinetics of drug delivery of hydrogel in an environment similar to the body (pH 7.4) were examined. The effect of nanoparticle different percentages on the hydrogel was clearly observed. Then kinetics of drug ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2015